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Notation
A=cross-sectional area of flow (L2);

Az=volumetric cumulative infiltration per unit length (L3/L);

C=solute concentration (M/L3);

C0=constant solute concentration at furrow inlet (M/L3);

Ci=initial solute concentration in the irrigation stream (M/L3);

h=pressure head (L);

K(h)=unsaturated hydraulic conductivity function (L/T);

KS=saturated hydraulic conductivity (L/T);

Kx=hydrodynamic (longitudinal) dispersion coefficient (L2/T);

L=field length (L);

Q=flow rate (L3/T);

Se=effective saturation (-);

So=furrow longitudinal slope (-);

Z=cumulative infiltration depth (L);

b=width of flow (L); 

cu=dimensional constant for the Manning formula (L1/2/T);

fc=a constant of the longitudinal dispersion function (-) ;

k(L/Ta), a(-), and b(L/T)=parameters of the modified Kostiakov 
function; 

n=Manning roughness coefficient (L1/6);

t=time referenced from the beginning of irrigation (T);

t1=the preceding time level (t1=tc-∆tc), referenced from advance 
time to computational node j (T);

tc=current time, referenced from advance time to computational 
node j (T);

ts1=time referenced from tso (T); 

ts0=time at which solute application begins, referenced from the 
beginning of irrigation (T); 

ts2=time referenced from tsco (T);

tsco=time at which solute application ends, referenced from the 
beginning of irrigation (T);

v=average cross-sectional velocity (L/T);

v*=shear velocity (L/T);

Abstract
This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. 

Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a numerical 
cross-section averaged advection-dispersion model. A procedure for integrating the furrow volumetric cumulative 
intake integral in the context of a hydraulic model is presented. Two hydraulic and solute transport data sets collected in 
sloping free-draining test furrows were used in model evaluation. Soil intake and hydraulic parameters were estimated 
with a simple approach that matches simulated and measured flow depth hydrographs. The field-scale Weighted 
Mean Relative Residual (WMRR) between measured and model predicted flow depth hydrographs are 22.0% and 
29.0% for the two data set. Furthermore, it is shown that the WMRR of 29.0% reduces to 16.0%, when only the error 
associated with the downstream end computational node is excluded. This suggests that a significant fraction of the 
error is related to the form of the downstream boundary condition used. It also shows that the effect of the downstream 
boundary condition does not extend to a large segment of the flow upstream. The longitudinal dispersion coefficient 
is approximated with an explicit equation as a function of the hydraulic and geometric variables. Model evaluation is 
conducted in three steps: (1) cumulative intakes and intake rates computed with the numerical formulation presented 
here were compared with a subsurface flow model, HYDRUS-2D; (2) solute breakthrough curves computed with the 
coupled flow and transport model were compared with those from exact analytical solutions for applicable conditions; 
and (3) model predicted solute breakthrough curves were compared with those obtained from field measurements. 
Overall the results suggest that the coupled flow and transport model is a useful irrigation and fertigation system 
management and evaluation tool.
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x=distance along the furrow (L);

y=flow depth (L);

∆tc=current time step size, ∆tc=tc -t1 (T); 

α (1/L), η (-), and m (-)=parameters of the van Genuchten soil 
water characteristics function;

δpi=length of the ith incremental wetted perimeter (L); 

γ1 (L
(1-2γ2 )

 ), γ2(-), ρ1(L
(16-6ρ2)/3), and ρ2(-)=furrow geometry parameters;

τ1=intake opportunity time at t1 and on the jth node along the 
furrow (T);

τc=intake opportunity time at tc and on the jth node along the 
furrow (T); 

θ =volumetric soil water content (-);

θi=inital soil water content (-);

θr=residual soil water content (-);

θs=saturation soil water content (-);

Introduction 
Modeling the transport of solutes in irrigation furrows requires 

some level of coupling between the solutions of the surface and 
subsurface flow and transport equations. Numerical solutions of the 
one-dimensional (1D) open-channel flow equations [1-3] provide the 
hydrodynamic basis for surface irrigation solute transport models [4-
6]. Field-scale physics based surface-subsurface flow and transport 
modeling of surface irrigation processes is feasible [7]. However, such 
models require the integration of four sub-modules (surface irrigation 
hydraulic and transport models and subsurface flow and transport 
models) interacting at the level of the duration of a time step. Hence, 
they are computationally intensive.

In surface irrigation modeling, infiltration is typically computed 
with empirical functions, often using the Kostiakov [8] and the 
modified Kostiakov [9] equation. In irrigation furrows the extent of 
the infiltrating surface (wetted perimeter) varies both with time and 
distance. The variation in wetted perimeter has a direct effect on 
infiltration from a furrow cross-section as well as on the longitudinal 
distribution of infiltrated water along a furrow [10-12]. In this study, 
a numerical procedure is presented for integrating a volumetric 
cumulative intake integral (that takes into account wetted perimeter 
effects) in the context of a furrow hydraulic model. With this approach 
the dynamics of subsurface flow and transport is neglected or replaced 
with simplifying assumptions relating to the distribution of water and 
solute in the soil profile, but the resulting model is a lot more efficient 
and robust and is useful in practical irrigation system management.

The cross-section averaged advection-dispersion equation (ADE) 
is the governing equation for the transport of a nonreactive, non-
sorbing, and neutrally buoyant solute in a furrow irrigation stream. 
The cross-section averaged ADE can be discretized with Eulerian 
integration schemes [5]. However, such schemes often lead to serious 
numerical problems in advection dominated transport problems with 
steep concentration gradients, such as those encountered in furrow 
irrigation streams. A numerical procedure, known as the split-operator 
method, which decouples (in the mathematical sense) the advective 
transport from the mechanism of dispersion and solve the resulting 
pair of equations in two steps has been shown to be accurate and 
efficient in modeling advection dominated solute transport processes in 

free surface flows [13-15], including surface irrigation streams [4,6,7]. 
The solute transport model described in this paper is an adaptation, 
for irrigation furrows, of the basin and border model presented in 
reference [7].

Results of recent studies [16] suggest that limitations of the 
Eulerian methods could be overcome through the discretization of 
the coupled flow and transport equations with high resolution Total 
Variation Diminishing (TVD) schemes. Considering that established 
surface irrigation hydraulic models [1,17] are based on Eulerian 
numerical schemes (effective for hydraulic modeling but not suitable 
for solving advection dominated transport problems) there is little 
prospect that the fully coupled approach will be integrated into existing 
surface irrigation hydraulic models in the near future. The preceding 
discussion suggests that empirical infiltration function based internally 
coupled hydraulic and solute transport models will remain the most 
promising agricultural systems management and environmental risk 
assessment tools for some time to come.

This paper presents an internally coupled flow and solute transport 
model for free-draining irrigation furrows, with sub-modules 
interacting at the level of the duration of a time step, which represents 
an advance over the non-coupled furrow irrigation transport models 
[5,6]. Furrow hydraulics is simulated with a numerical zero-inertia 
model, adapted from the model described in reference [7]. A numerical 
procedure is presented for integrating the furrow volumetric cumulative 
intake integral in the context of a hydraulic model. The solution of the 
1D advection-dispersion equation described in reference [7] is adapted 
for furrows in the current study. The numerical technique used to solve 
the flow equations in the coupled model described here is an industry 
standard for surface irrigation hydraulic modeling systems. Hence, 
the solution of the solute transport equation can readily be integrated 
into existing surface irrigation hydraulic models. Model evaluation is 
conducted in three steps: (1) a numerical approach presented here for 
computing infiltration from a furrow is evaluated through comparison 
with HYDRUS-2D [18]), (2) the numerical solute transport model 
described here is tested by comparing its output with simplified 
analytical solutions, both for pure advection and advection-dispersion 
in a quasi-uniform flow field, and (3) the coupled model is evaluated 
by comparing field measured and model predicted solute breakthrough 
curves at a series of points along two test furrows. Hydraulic and solute 
transport data sets collected in two test furrows at the Desert Research 
and Extension Centre of the University of California-Davis (labeled 
as DREC-1 and DREC-2 data sets) were used in model evaluation. 
Overall the results of model evaluation show that the coupled flow and 
transport model is a useful predictive tool for irrigation and fertigation 
system management.

Furrow Hydraulic Model
Using the Manning equation to evaluate the friction slope and 

empirical approximations for flow depth and the hydraulic section 
factor [19], the zero-inertia equations for a furrow can be given as:
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where Q=furrow flow rate (L3/T), x=distance along furrow (L), 
A=flow cross-sectional area (L2), AZ=volumetric cumulative intake 
per unit length of furrow (L3/L), t=time (T), γ1 (L(1-2γ2)), γ2 (-), ρ1( L(16-

6ρ2)/3) and ρ2 (-)=empirical furrow geometry parameters, So= furrow 
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longitudinal slope (-), n=Manning roughness coefficient (L1/6), and 
cu=dimensional constant equivalent to 1 m1/2/s in an appropriate unit 
(L1/2/T).

Definition of the furrow irrigation hydraulic problem is completed 
with a statement of pertinent initial and boundary conditions [3]. Much 
of the boundary and initial conditions are physically intuitive and 
mathematically trivial. However, the downstream boundary condition 
for a free-draining furrow during the post-advance phase requires 
further discussion. A widely used downstream boundary condition 
for a free-draining furrow is a rating curve (given as QL=f(AL), where 
AL and QL=cross-sectional area of flow and flow rate, respectively, at 
the downstream boundary of the computational domain, with the 
subscript L being the length of the furrow). There are three alternative 
implementations of such a boundary condition in the model described 
here: (1) For furrows with a free over-fall downstream boundary, the 
approach described by Strelkoff [20] for a free-draining border strip is 
adapted here for a free-draining furrow. For furrows that do not drain 
freely into a drainage channel, depending on the availability of data, 
the rating curve at the downstream boundary of the computational 
domain can be specified either: (1) based on field measured depth-flow 
rate data or (2) based on a normal depth assumption. These boundary 
conditions are useful when there is interest in modeling only a section 
of the stream, between the inlet end and some point in the middle 
of the stream, or if the stream does not end in a free over-fall, but 
instead continue to flow to an adjacent field downstream. Numerical 
implementation of these boundary conditions, in each iteration of a 
time step, involves linearization of the Q(AL) function with a first-order 
approximation of Q, the resulting equation is then integrated into the 
double-sweep algorithm. Details of the numerical solution of Equations 
1 and 2 are given in references [3,20,21]. 

Furrow infiltration modeling

Unlike basins and borders; furrows have much narrower cross-
section, with flow depth and width that are of the same order of 
magnitude. Hence, flow depth variation in a furrow not only affects 
the surface boundary condition for infiltration, but also the extent of 
the soil-water interface (wetted perimeter) through which infiltration 
occurs. Considering a homogeneous, isotropic soil, and a uniform 
initial water content; at any one time in the course of an irrigation 
event the soil water content distribution, (hence matric head gradient) 
about a point along a furrow wetted perimeter is nonsymmetrical. The 
nonsymmetrical distribution of soil water about a point along a furrow 
cross-section produces the two-dimensional infiltration flux, i2D, at the 
point. Physics based reasoning suggests that the angle that i2D makes 
with the vertical, measured in the counter-clockwise direction, changes 
continuously with intake opportunity time at the point (as the soil 
water content increases). It is maximum when a point is first wetted 
(and could be well above 90°) and steadily decreases to a minimum of 
about 0° (oriented vertically downward) after a sufficiently large time 
following initial wetting. The preceding discussion shows that both the 
magnitude and the direction of i2D vary along the wetted perimeter of 
the furrow. 

Given a computational node along a furrow (say node j), at any 
given time, t (referenced from the advance time to node j, taj), the 
volumetric infiltration rate can be expressed as the line integral of the 
two-dimensional infiltration flux, i2D (L/T), along the wetted perimeter 
Figures 1a-1d:

2
z

D
P

dA i dp
dt

= ∫                                                                          (3)

Where dp=differential arc length along the wetted perimeter (L) and 
P=the wetted perimeter curve. Equation 3 is the statement of continuity 
for furrow infiltration in its fundamental form - the flux integral is 
equated with change in storage. At this level of approximation, the 2D 
infiltration flux, i2D, can in theory be derived from a rigorous physics 
based model or some approximations thereof. In which case at any 
given point on the wetted perimeter, i2D is some function of the soil 
hydraulic properties and initial and boundary conditions. However, 
empirical approximations can be used, in which case given a soil type 
and initial and boundary conditions (the effect of which are taken into 
account by model parameters in an average sense), i2D depends only 
on the intake opportunity time, τp, which is variable along the wetted 
perimeter. Based on empirical approximation of i2D, it can be shown 
that an integral expression for the volumetric cumulative intake from 
a furrow cross-section (a form amenable to numerical solution) can be 
derived from the continuity equation.

( ) ( , ) 0z c c c m
P

A t Z t p dp for t t= ≤ ≤∫             (4)

Where tc=current time referenced from advance time to a 
computational node Figure 1a-1d; Z=cumulative infiltration depth at a 
point, p, along the wetted perimeter in a furrow cross-section (L); p=is 
a point on the wetted perimeter, defined in terms of its horizontal and 
vertical coordinates; and tm=time at which flow depth at a furrow cross-
section is maximum, referenced from advance time to a computational 
node.

In Equation 4 the two dimensional nature of infiltration is not 
explicit, however, it is taken into account (in an average sense) by the 
infiltration parameter estimates. Noting that Z(tc,p) in Equation 4 is 
equivalent to Z(τp), whereτp is the intake opportunity time at any given 
point p along the wetted perimeter at the current time; it follows that 
Equation 4 is essentially the same as the equation postulated in reference 
[11] to define volumetric cumulative intake from a furrow cross-
section. As indicated above, Equation 4 is valid only for the advance 
and wetting phases in a furrow cross-section. It can be shown that the 
integral expression for the infiltration phase during which water level is 
decreasing is too complex to be reduced to a simpler form as Equation 
4 and it is of no practical computational value. Hence, in the model 
described here a simpler numerical approximation is used to compute 
cumulative infiltration during the recession phase. Since the recession 
phase in irrigation furrows typically accounts for a small fraction of the 
total irrigation time, this simplification is not a significant limitation.

Numerical integration of the volumetric intake function in 
the context of a surface irrigation hydraulic model

Some authors [11,12] have examined the relative merits and 
limitations, in terms of accuracy and robustness, of various numerical 
approximations to the integral expression in Equation 4 and some 
additional formulations. These studies noted that some approximations 
to the integral expression in Equation 4 are computationally intensive 
and their accuracy is impaired due to loss of significant digits. However, 
recent advances in computer software and hardware make this issue 
less important. Hence, more rigorous formulations are explored 
subsequently.

Assuming the time step sizes, ∆t, used in the numerical solution 
of Equations 1 and 2, Figure 1a-1d are sufficiently small, at any 
given computational node along the furrow (say node j) and time, tc, 
the cumulative infiltration depth function Z(tc,p) can be integrated 
numerically over the wetted perimeter, leading to the form

1
( ) ( ) i

I
i

z c av c
i

A t Z t pδ
=

= ∑                                                                        (5)
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where i=index of nodal wetted perimeter increments at a furrow 
cross-section (i=1 at the end of the first time step following the arrival of 
the advancing front at the furrow bottom at node j and is incremented 
by one at the end of each subsequent time step), I=the total number of 
wetted perimeter increments on node j at the current time, tc Figure 1b 
and 1d; Zav(tc)

i= the arithmetic average of the cumulative infiltration 
depths at the upper and lower ends of the ith wetted perimeter 
increment at time tc (L); and δpi=the ith wetted perimeter increment (L). 
The cumulative infiltration depth at the ith computational point along 
the wetted perimeter and at time tc, Z(tc)

i, can be calculated with an 
appropriate cumulative intake function. In the model described here 
the modified Kostiakov function is used

( )( ) ( ) ( )i i a i
c c cZ t k t b tτ τ= +                                      (6)

In Equation 6, k (L/Ta), a (-), and b (L/T)=infiltration parameters 
and τ(tc)

i=the intake opportunity time at the ith computational point on 
the wetted perimeter and time tc. Note that in Equation 6, i is an index 
for the computational points along the wetted perimeter, in which case 
i=0 at the furrow bottom and is incremented by one at the upper end of 
each wetted perimeter increment. Considering a numerical solution of 
Equations 1 and 2, in which the time step size (∆t) is known (which is 
the case in the model described here), the cumulative infiltration depth 

at each of the computational points along the furrow cross-section, 
Z(tc)

i ; the corresponding Zav(tc)
i for all the wetted perimeter increments; 

and all the wetted perimeter increments, δpi, except the Ith increment 
(i.e., the increment for the current time step) are known. The Ith wetted 
perimeter increment, δpI, is to be determined as part of the numerical 
solution of Equations 1 and 2. Hence, Equation 5 can be expressed in 
terms the incremental wetted perimeter during the current time step 
as follows:

1

1
1

( ) ( ) ( ) ( )i
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i I I
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i
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−

=

= + ∆ + ∆∑                     (7)

In Equation 7, t1=the preceding time level referenced from 
advance time to the computational node (tc-∆tc); ∆tc=current time 
step (T); and ∆Zav(tc)

i=the arithmetic average of the incremental 
cumulative infiltration depths at the upper and lower ends of the ith 
wetted perimeter increment during ∆tc (L). The first term in Equation 
7 represents the volumetric cumulative intake at t1, the second term 
represents the incremental volumetric cumulative infiltration during 
∆tc over the wetted perimeter extant at t1, and the third term represent 
the contribution of the Ith wetted perimeter increment, δpI.

Based on the definition of wetted perimeter, p, and an empirical 
approximation of the square of the hydraulic section factor, A2R4/3=ρ1 
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Figure 1: (a) Discretization of the solution domain for a numerical solution of Equations 1 and 2, (b) Flow depth hydrograph at computational node j, (c) Furrow wetted 
perimeter as a function of time at node j, and (d) Cumulative intake as a function of time at node j (t=time measured from the beginning of irrigation, x=distance along 
furrow measured from inlet end, i=index of nodal wetted perimeter increments, I=total number of wetted perimeter increments at the current time, tc, tc=current time 
referenced from taj, taj=advance time to node j,  j=distance step index, k=time step index, tL=advance time to downstream end, tdp=depletion time, tr0 =recession time 
at furrow inlet, y= flow depth hydrograph, ymax=nodal maximum flow depth,  p=wetted perimeter as a function of time, pmax=nodal maximum wetted perimeter, and 
Az=volumetric cumulative intake function).
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Aρ2; at any given node along the furrow the ith incremental arc length, 
δpi, can be given in terms of nodal flow cross-sectional area, A:

2 21
1 ( ) ( )i i ip A Aλ λδ λ − = −                                                           (8)

In Equation 8, λ1 (L
(6ρ2-16)/4)=(ρ1)

-3/4 and λ2 (-)=2.5-0.75ρ2 [22].

Substituting Equation 8 in 7 and rearranging terms yields the 
equation for volumetric cumulative infiltration per unit length of 
furrow as implemented in the hydraulic model described here

1 2 2
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In Equation 9, the first term on the right hand side is the volumetric 
cumulative intake at t1, the summation (the second) term represents 
the incremental volumetric cumulative infiltration during the current 
time step (∆tc) over the wetted perimeter extant at t1, and the sum of 
the third and fourth terms represent the contribution of the Ith wetted 
perimeter increment, δpI.

As shown in Equation 4 and 9 is applicable as long as the 
wetted perimeter is increasing. Attempts to compute the volumetric 
cumulative infiltration during the period water level is decreasing with 
a slightly modified version of Equation 9 were not successful due to 
numerical problems. Hence, in this analysis volumetric cumulative 
infiltration during the period water level is decreasing is computed 
with a simpler equation [22].

[ ] [ ] 2

1 1 1( ) ( ) ( ) ( ) ( )z c z c cA t A t Z Z A t λτ τ λ= + −                                   (10)

Where τc=tc-taj, τ1=t1-taj, and taj=advance time to node j (T). 
The first term on the right hand side of Equation 10 represents 
volumetric cumulative intake at t1 and the second term represents the 
incremental nodal volumetric cumulative intake corresponding to the 
current time step, ∆tc. With Equation10, the incremental volumetric 
cumulative infiltration depth, over ∆tc, is computed as a function of 
the intake opportunity time at the furrow bottom and the current 
wetted perimeter. It is important to note that the use of Equation 9 in 
conjunction with Equation 10 assumes that advance and recession do 
not occur simultaneously. However, inflow cutoff time in furrows is 
typically larger than advance time; hence this is not a serious limitation.

Solute Transport Equations
The motion of a non-reactive, non-sorbing, and neutrally buoyant 

solute in a furrow irrigation stream can be described by a first order 
partial differential equation of the form

x
C C CA Q AK
t x x x

∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
                                                           (11)

Obtained by combining the conservative form of the cross-section 
averaged advection-dispersion equation with the continuity equation, 
Equation 1, of the hydraulic model [7]. In Equation 11, C=solute 
concentration (M/L3) and Kx=longitudinal dispersion coefficient 
(L2/T). Flow cross-sectional area, A, and flow rate, Q, are obtained from 
the solution of the water flow model (Equations 1 and 2). The limiting 
assumptions that apply to Equation 11 are described in reference 
[7]. The most significant assumption in the derivation of the cross-
section averaged advection-dispersion equation is the description of 
dispersion as a gradient-diffusion process (that Fick’s law can be used 
to model hydrodynamic dispersion). This assumption is valid only in 
the channel segment where differential advection is in equilibrium 

with turbulent diffusion. In general, the length of the initial advection 
dominated period (or channel reach), following solute injection, is 
directly proportional to the square of the channel width [23]. Given 
that furrows are miniature channels with longitudinal dimension 
orders of magnitude greater than its vertical and transverse dimensions 
(and that the transverse and vertical dimensions are of the same order 
of magnitude), complete mixing in a cross-section can be expected to 
occur shortly after the injection of solutes at the furrow inlet – at a short 
distance relative the furrow length. This implies that in theory Equation 
11 is well suited to simulating solute transport in irrigation furrows.

Numerical solution of the solute transport equation

In surface irrigation context, where advection is the dominant 
transport mechanism, an accurate and efficient numerical solution of 
Equation 11 can be achieved by decoupling the advective transport 
from the mechanism of dispersion and solving the resulting pair of 
equations in two steps with numerical techniques appropriate to 
each sub-problem. Accordingly, Equation 11 can be expressed as a 
combination of two sub-systems: pure advection (Kx=0) described by

0C Cv
t x

∂ ∂
+ =

∂ ∂
                                                                                         (12)

x
C CA AK
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
                                                                        (13)

First Equation 12 is solved, for the intermediate solute 
concentrations, Ca, typically with a semi-Lagrangian integration 
scheme Holly and Preissmann [23]. The advected concentrations, Ca, 
are then diffused longitudinally by solving Equation 13 with Eulerian 
integration schemes [4,6,7]. Pertinent initial and boundary conditions 
are described in reference [7].

In the model described here, the semi-Lagrangian integration 
scheme used to solve Equation 12 implements a combination of the 
method of characteristics and an interpolation scheme based on 
Hermite cubic polynomial. For the diffusion step, Equation 13 is recast 
as a pair of first order linear differential equations. These equations are 
then discretized using the Preissmann implicit finite difference scheme. 
The resulting linear equations are then coupled leading to a system of 
linear algebraic equations. The linear system of equation is solved using 
the double-sweep algorithm, after being augmented with pertinent 
initial and boundary conditions.

The Preissmann finite difference approximation is not only robust 
and accurate (if the solution domain is discretized with prudence), but 
also handles boundary conditions more effectively than other implicit 
methods that use three nodes to discretize the spatial derivative. A 
detailed description of the split-operator method as applied to the 
solution of Equations 12 and 13 in the model described here can be 
obtained from reference [7]. In addition to differences in terms of the 
specific numerical techniques used to solve the advection-dispersion 
equation, an important advance that distinguishes the model described 
here from other published furrow irrigation solute transport models 
[5,6] is that the model presented here is an internally coupled model. 
Hence, the flow and solute transport components of the model 
described in this paper are programmatically linked and are interacting 
at the level of the duration of a time step. This aspect of the flow and 
transport model is described subsequently.

Coupling of the Water Flow and Solute Transport 
Components of the Model

A description of the approach used for coupling of the hydraulic 
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and solute transport components was provided in reference [7]. A 
concise review this procedure is presented here.

From programming point of view, the solute transport module is 
implemented as a class (a user defined data type with a collection of 
member functions and data types) of the coupled flow and transport 
model. The hydraulic component is the controlling module and it sets 
the simulation time step for the solute transport sub-module as well. 
However, selection of time step sizes needs to take into account the 
relative sensitivity of the numerical solution of the solute transport 
equation, especially if the solute input involves finite pulses or step 
inputs with steep concentration gradients.

The interaction between the hydraulic and solute transport 
components during a time step is unidirectional – i.e., data flows only 
from the hydraulic module to the solute transport component and no 
data is returned to the water flow model. At the end of the hydraulic 
simulation for each time step, the water flow module passes an array of 
the nodal flow rates, cross-sectional areas, and incremental cumulative 
intakes to the solute transport module. The solute transport module 
then uses these data to calculate the nodal solute concentrations, in 
the irrigation stream, along the furrow and the incremental amount 
of solute infiltrated into the soil per unit length of furrow and returns 
control to the water flow model. This completes the solution to the 
coupled hydraulic and solute transport simulation over a time step. The 
solution then proceeds to the next time step, where first water flows is 
simulated followed by solute transport computation. This procedure is 
repeated until the entire fertigation process is simulated.

A description of the evaluation of the coupled flow and solute 
transport model, which include theoretical evaluations and a 
comparison of model predictions with field data, is presented 
subsequently.

Model Evaluation, Theoretical
Evaluation of the approach used to model wetted perimeter 
effects on furrow infiltration

The numerical formulation, for calculating infiltration from a 
furrow cross-section Equations 9 and 10, was evaluated by comparing 
its output with that obtained from a two-dimensional numerical model 
of flow and transport in a variably saturated porous medium HYDRUS-
2D [18]. A hypothetical test problem was setup for this evaluation. In 
order to develop a test with reasonable changes in water depth and 
wetted perimeter, flow simulation was conducted with the hydraulic 
model described above, using an empirical infiltration relationship 
where infiltration opportunity time changes along the wetted perimeter 
i.e., Equations 9 and 10. The input data for the surface irrigation 
hydraulic model are given in Table 1, Data set 1 (Q0 through P2). Then, 
HYDRUS-2D parameters shown in Table 1, Data set 1 (KS to θr), were 
estimated through trial and error by matching cumulative intake 
computed by HYDRUS-2D with the cumulative intake computed with 
Equations 9 and 10 at the upstream end of the test furrow.

The HYDRUS-2D simulation presented here used the van 
Genuchten-Mualem equations [25,26] to define soil water characteristics 
and soil hydraulic conductivity:
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In Equations 14 and 15, θ =soil water content (-), θs=the saturation 
water content (-), θr=residual water content (-), α (1/L), η (-), and m 
(-)=soil water characteristics function parameters, K(h)=unsaturated 
hydraulic conductivity function (L/T), h=pressure head (L), 
Ks=saturated hydraulic conductivity (L/T), and Se=effective saturation 
(-).

To conduct the HYDRUS-2D simulation, a computational domain 
of 1.5m (horizontal)×3m (vertical) with homogeneous soil profile 
and initial soil moisture content (Se(qi)=0.184, where qi=initial soil 
water content) was defined. Because the wetting front did not reach 
the boundaries of the computational domain during the simulation 
period (136.0 min), the soil water contents at the boundaries were 
kept constant during the computation. The computational domain was 
discretized into 1299 nodes with significantly greater detail around the 
furrow surface. In addition, the bottom boundary condition was set to 
free drainage. The depth hydrograph generated by the surface hydraulic 
model at the furrow inlet was used as the surface boundary condition.

Figure 2 shows a comparison of the cumulative infiltration and 
infiltration rates computed with HYDRUS-2D and with the numerical 
approach described here Equations 9 and 10. During the first 25 
min of infiltration, cumulative intakes calculated with HYDRUS-2D 
are larger than those from Equation 9. Nonetheless, the differences 
are small when compared to the final cumulative infiltration. In the 
interval subsequent to the first 25 min, cumulative intakes calculated 

Variables/
Parameters Unit Data set 1 Data set 2 DREC-1 DREC-2

Q0 L/s 1.71 1.5 2.21 2.06
L m 168.6 250 346.0 346.0/244.0(2)

tco min 90.0 200 350.0 330.0
n m1/6 0.045 0.045 0.125 0.1
So - 0.0002 0.0008 0.002 0.002
k mm/ha 46.05 0 157.7 186.9
a - 0.44 0 0.27 0.35
b mm/h 45.45 0 13.5 4.1
γ1 m2-γ2 0.632 1.406 1.385 0.748
γ2 - 0.551 0.667 0.749 0.574
ρ1 m(16-6ρ2)/3 0.203 0.302 0.513 0.272
ρ2 - 2.697 2.667 2.837 2.742
Kx m2/s - 0.0/0.33(1)

KS mm/h 44.7
η - 1.406 -
α 1/mm 0.008 -

Se(θi) - 0.184 -
θs - 0.43 -
θr - 0.078 -

Note: Soil hydraulic parameter set (Ks, ƞ, a,  Se, θs, and θr) is one that resulted in 
a good fit between the cumulative infiltration calculated with HYDRUS-2D and the 
numerical formulations (Equations 9 and 10), Figure 2. Data Set 1 = hypothetical 
data used in the comparison of Equations 9 and 10 with HYDRSU-2D and Data Set 
2 = Data used in the comparison of numerical and analytical solutions (advection 
and advection-dispersion equations). 
1Dispersion coefficient is set to 0.0m2/s for advection test and to 0.33m2/s for 
comparison of the numerical and analytical solutions of the advection-dispersion 
equation and 
2 Furrow length/length used for model evaluation purposes

Table 1: Hydraulic and transport parameters used in model evaluation.
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with the two approaches show good agreement until the beginning of 
recession, after which they diverge. Because intake rates are generally 
small during the recession phase, these discrepancies did not lead 
to a significant difference in the computed cumulative intakes. The 
difference in the final cumulative infiltration computed with the two 
methods is 0.0018 m3/m, which is only about 2.1% of the cumulative 
intake obtained with HYDRUS-2D. Note that the noise in intake rates 
computed with the empirical approach occurs at irrigation phase 
transitions, for example the largest spike/trough is right after cutoff 
time. Since they occur over very short time steps, they have little effect 
on cumulative infiltration. Overall, the preceding discussion suggests 
that the empirical formulation of furrow infiltration, presented above, 
is satisfactory.

Evaluation of the numerical solution of the advection 
equation

Noting the significance of the numerical problems (nonphysical 
diffusion and oscillations) associated with the discretization of the 
advection equation, the numerical solution of the advection step is 
evaluated separately using test problems with steep concentration 
gradients. The outputs of the numerical model are compared with a 
simplified analytical model. Assuming flow is steady and uniform, 
the trajectories (the characteristics) in the (x,t) plane along which 
concentration is invariant become straight lines. Hence, given solute 
concentration at any given point in the computational domain, C(x1,t1), 
the line along which the concentration, C, propagates, unchanged, in 
the (x,t) plane can be expressed as

2 1 2 1
( )x x v t t= + −                                                                       (16)

Where (x1,t1) and (x2,t2)=distance and time coordinates (referenced 
from the furrow inlet and the beginning of irrigation, respectively) of 
points that are on a characteristic along which the concentration is 
constant and v=average cross-sectional velocity (L/T) - invariant with 
time and distance.

In general, flow in an irrigation furrow is unsteady and non-
uniform. However, if irrigation is applied to a long, impervious, free-
draining furrow for a sufficiently long time, a flow condition that closely 
approximates a steady uniform flow over a large fraction of the furrow 
length (excluding a section close to the free over-fall) can be attained. 
Hence, a hypothetical test case consisting of a furrow with a free-
draining downstream end boundary, an impervious bed, and a length 
of 250 m is set up for this evaluation. The specifics of the hydraulic and 
transport data used in this evaluation are summarized in Table 1, data 
set 2. In order to approximate the flow condition for which Equation 
16 is valid over the upper 200 m long section of the furrow (80.0% of 
the test furrow), the hypothetical test furrow was irrigated with pure 
water (C=0.0 g/m3) at a constant inflow rate of 1.5L/s for 100.0min 
before solute application begins. Two solute application configurations 
are considered in the current evaluation Figure 3a and 3c: (1) A step 
input Figure 3a: with this configuration, the solute concentration at 
the inlet is set at 0.0 g/m3 for the first 100.0 min following the start 
of irrigation and then inlet solute concentration is instantly raised 
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Figure 2: Comparison of cumulative infiltration and infiltration rate calculated with HYDRUS-2D and Equations 9 and 10.
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to 100.0 g/m3 at t=100.0 min and is maintained constant until inflow 
cutoff - 200.0 min and (2) A finite pulse input Figure 3c: with this solute 
input configuration, the furrow is irrigated with pure water for the first 
100.0 min. Inlet solute concentration is then raised to 100.0 g/m3 at 
t=100.0 min and is maintained constant for 15.0 min, then dropping 
promptly to zero at t=115.0 min. These solute input configurations 
have nearly infinite spatial concentration gradients at the transitions; 
hence present the highest degree of difficulty to the numerical solution 
of the advection equations. Because of this attribute they are commonly 
used in test problems in evaluating the soundness of the numerical 
solutions of the advection equation [16].

Figure 3a and 3c show the solute breakthrough curves at the 
furrow inlet representing step and finite pulse inputs, respectively. 

Figure 3b and 3d depict 3D views of the resulting spatial distribution 
of solute along the furrow, at three different times (116.0 min, 126.0 
min, and 136.0 min), calculated with Equation 16 and the numerical 
model. For both the step input and finite pulse test cases, the amplitude 
and variance of the solute distribution profiles calculated with the 
numerical and analytical solutions are in good agreement. These results 
indicate that the numerical solution of the advection term with a semi-
Lagrangian integration scheme is stable and accurate when used in 
furrow irrigation context.

Comparison of the numerical solution of the advection-
dispersion equation with analytical solution

For a steady uniform flow condition, the cross-section averaged 
advection-dispersion equation can be written as:
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Figure 3: Comparison of analytical and numerical solution for pure advection (Kx =0.0m2/sec and ∆t=30.0sec) : (a) Step input of 100g/m3 (tS0=100.0min), (b) Solute 
distribution along the furrow  stream at three times -step input, (c) A finite pulse of 100.0g/m3 for 15minutes (ts0=100min and tSco=115.0min), and (d) Solute distribution 
along the furrow  stream at three times – finite pulse input.
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2

2x
C C Cv K
t x x
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+ =
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                  (17)

In Equation 17, v and Kx are constants. Given the initial condition 
(C(x,0)= Ci, for 0 ≤ x ≤ L) and a step solute input at the furrow inlet 
(C(0,t)=C0, for ts0 ≤ t), where t=current time referenced from the 
beginning of irrigation (T), and ts0=the time solute application begins, 
referenced from the beginning of irrigation (T). Equation 17 can be 
solved analytically [17]:

0 1( , ) ( ) ( , )i i sC x t C C C F x t= + −                   (18)

Where 

1 1
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1 1

( , ) 0.5 exp
2 2
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KK t K t

     − +
= +              

               (19)

x=distance from inlet end (L) and ts1=t-ts0. Considering a step 
input at the furrow inlet and a furrow segment closely satisfying the 
flow conditions for which Equation 17 is valid, the solute breakthrough 
curve at any given point along the furrow stream or the solute 
distribution profile with distance can be calculated with Equation 18. 
For a finite pulse input with a constant concentration, C0, applied over 
the interval ts0<t<tsco and a zero initial concentration (Ci=0.0g/m3), the 
solution for Equation 17 in the interval tsco<t is [17]:

0 1 0 2( , ) ( , ) ( , )s s scoC x t C F x t C F x t for t t= − <                (20)

In Equation 20, ts2=ts1 - (tsco- ts0) and tsco=the time at which solute 
application ends, measured from the beginning of irrigation (T). Note 
that for ts0<t<tsco, C(x,t) is calculated with Equation 18. Figure 4a shows 
the finite pulse solute input (i.e., the breakthrough curve at the furrow 

inlet) used in the current evaluation. Figure 4b depicts a comparison 
of the spatial solute distribution profiles, predicted by the analytical 
and numerical models, at four time levels subsequent to the start of 
solute application (108.0 min, 116.0 min, 121.0 min, and 126.0 min). 
Noting that actual flow conditions in the test furrow only approximates 
steady-uniform flow conditions and considering the errors inherent 
in the numerical solution, the close match obtained between the 
numerical and analytical solutions Figure 4b validates the accuracy of 
the numerical model.

Model Evaluation with Field Data
Description of system parameters

The coupled flow and solute transport model described here 
requires the specification of field-scale average hydraulic and transport 
parameters as input data. The hydraulic parameter set includes: the 
Manning roughness coefficient, n Equation 2, and parameters of the 
modified Kostiakov infiltration function k, a, and b; Equation 6. The 
only solute transport parameter of interest here is the hydrodynamic 
(longitudinal) dispersion coefficient, Kx Equation 11, or constants 
related to the equation used to estimate Kx. The approaches used to 
estimate these parameters are briefly described subsequently.

Field experiment

Hydraulic data: In the spring of 2010, a field study was conducted 
to collect hydraulic and solute transport data in the Desert Research 
and Extension Center (DREC) of the University of California-Davis. 
These data sets were collected in sloping free-draining furrows and 
labeled as DREC-1 and DREC-2 Table 1. The furrows are used to 
irrigate Alfalfa crop grown on a silty clay loam soil. They are 346.0 m 
long and have an average longitudinal slope of 0.2%. Irrigation water 
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is delivered to the individual furrows through a gated pipe that runs 
across the head end of the field. Inflow into individual test furrows 
was measured with portable flumes. Table 1 presents a summary of the 
data, including: average inflow rate, inflow cutoff time, furrow length, 
furrow-wide average geometry parameters and longitudinal slopes. 
Actual furrow cross-sectional dimensions and longitudinal slopes are 
spatially variable; however, furrow geometry parameters and slopes 
shown in Table 1 are spatial averages. In addition, depth hydrographs 
were measured at six (DREC-1) or five (DREC-2) regularly spaced 
(≈61m interval) measurement stations along the test furrows. Although 
the furrow length for the DREC-2 data set as well is 346.0 m, water did 
not advance beyond 260.0 m during the duration of the experiment 
(330.0 min) and flow depth measurements were made only over the 
upper 244.0 m reach of the furrow (the distance at which the fifth depth 
measurement station was installed). Hence, in subsequent analysis 
only the upper 244.0 m segment of the furrow is considered and the 
downstream boundary condition used in the hydraulic simulation is 
a rating curve defined in terms of the Manning equation, Equation 2.

Solute transport data: In this study the Bromide ion (Br-) is used 
as a tracer to simulate the transport of soluble nitrogen fertilizer (such 
as NO3

-) in the furrow irrigation stream. A solution of potassium 
bromide (KBr) in a standard fertilizer feed-tank was placed on an 
elevated platform close to the head end of the test furrows. The feed 
tank was connected with a plastic hose to a simple metering apparatus, 
which injects the Br- solution into the inlet end of a test furrow. The 
metering apparatus consists of a small box like container fitted with a 
nozzle at the bottom and a float valve arrangement at the inlet so as to 
maintain a constant head and hence a constant solution injection rate 
into the stream. Bromide solution was injected at a rate of about 600 
ml/min in five pulses with on-off times of about 30min. Water samples 
were collected at each of the measurement stations manually at regular 
time intervals of 10min. The concentration of Br- in the water samples 
were then measured in the laboratory calorimetrically [27] with an 
autoanalyzer [28]. Measured nodal solute breakthrough curves are 
used to evaluate the solute transport model.

Estimation of soil intake and hydraulic (Infiltration and 
Manning Roughness) Parameters

Typically, the calibration of surface irrigation hydraulic models 
is often performed with volume balance based approaches [9,29-31]. 
These approaches do not explicitly take into account the effects of 
wetted perimeter variation on furrow in filtration; hence they cannot 
be applied to the specific formulation of the furrow infiltration problem 
described here. In this study, furrow infiltration and roughness 
parameters were estimated with a simple procedure that matches 
model predicted depth hydrographs with their measured counterparts. 
Table 1 summarizes the infiltration and roughness parameter estimates 
for DREC-1 and DREC-2 data sets.

A comparison of measured and model predicted depth 
hydrographs (computed based on estimates of the infiltration and 
roughness parameters given in Table 1) for DREC-1 and DREC-2 data 
set is shown in Figures 5 and 6, respectively. The field-scale Weighted 
Mean Relative Residual [3] between the measured and computed flow 
depth hydrographs are 22.0% and 29.0% for DREC-1 and DREC-
2 data sets, respectively. However, it can be noted that a significant 
fraction of the WMRR for DREC-2 data set is contributed by the 
differences between measured and computed depth hydrographs at the 
downstream computational boundary Figure 6e. In fact, the WMRR 
(for DREC-2 data set) reduces to 16.0% only if the flow depth data 
from the downstream computational boundary is excluded from the 

analysis. This shows that much of the error is associated with the form 
of the downstream boundary condition. It also shows that the effect of 
the boundary condition does not extend to a large section of the flow 
upstream. Note that this observation can be confirmed by a careful look 
at the hydraulics of furrow irrigation in close vicinity of the downstream 
boundary, which suggests that the effect of the downstream boundary 
condition typically attenuates at a short distance upstream.

The use of field measured depth-flow rate data as the downstream 
boundary condition (instead of the normal depth assumption used in 
the current analysis) may lead to a better agreement between measured 
and simulated depth hydrographs for the downstream computational 
boundary. However, measured rating curve is unavailable for the 
downstream computational boundary of the DREC-2 data set, hence 
cannot be used. In addition, note that in a number of instances in 
Figures 5 and 6, measured nodal peak depths are larger than peak 
depths measured at an upstream node. These observations are for the 
most part due to irregularities in the furrow bottom elevation.

In general, the parameter estimates (Table 1, DREC-1 and DREC-
2 data sets) imply a high transient intake rate and a low steady state 
intake rate, which is consistent with the infiltration characteristics of 
the cracking heavy soil of the study site. In light of the approximate 
nature of the parameter estimation procedure used and given the 
uncertainties arising from spatial variability in soil, micro-topography, 
and furrow geometry not taken into account by the model; these results 
are deemed acceptable. In theory, more accurate parameter estimates 
may be obtained if spatial variability is taken into account and a 
parameter estimation model based on a formal nonlinear optimization 
algorithm is used.

Solute transport model evaluation

Estimation of longitudinal dispersion coefficient: Accurate 
estimation of the dispersion coefficient, Kx, is generally difficult [33]. 
In the current study, Kx is calculated with an approximate equation 
proposed in reference [23]: 

2 2

*
x c

v bK f
yv

=                      (21)

Where fc=a constant (-), v=cross-section average velocity (m/s), 
b=width of flow (L), y=flow depth (L), and v*=shear velocity (L/T), 

estimated by fgyS , g=gravitational acceleration (L/T2), and Sf=friction 
slope (-). fc is a constant that depends on the distribution of velocity and 
depth in a cross-section [23,34].  fc=0.011 was recommended for rivers 
and canals [34], however,  it has also been shown that fc can vary over a 
wide range [23,32]. Acceptable match between simulated and measured 
solute breakthrough curves were obtained for fc=0.011 under furrow 
irrigated conditions [33]. In this study an initial value of fc=0.011 is 
used and the sensitivity of the solution to changes in fc was evaluated 
as well.

Comparison of numerical solution and field data: Figures 7 and 
8 compare measured and computed Br- breakthrough curves at six 
locations (3.0 m, 61.0 mm, 122.0 m, 183.0 m, and 244.0 m and 305.0 m) 
for DREC-1 and at five locations (3.0 m, 61.0 mm, 122.0 m, 183.0 m, 
and 244.0m) for DREC-2 data sets. Note that five measured data points, 
from both DREC-1 and DREC-2 data sets, were deemed outliers, 
hence excluded from the analysis presented subsequently. In addition, 
although application of the KBr solution began an hour after the start 
of irrigation, a small amount of Br- was measured in the water samples 
collected prior to the start of KBr application (Figures 7 and 8). This 
could be due to either one or a combination of the following factors: 
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the background concentration of Br- in the irrigation water, noise, Br- 
extant in the soil surface at the time of irrigation gets dissolved by the 
irrigation water.

Figure 7a-7f show that for DREC-1 data set, an fc value of 0.011 

resulted in computed breakthrough curves (BTC’s) that are close to 
pure advection and fc=0.75 led to a more diffused BTC’s over the lower 
reach of the furrow. The BTC’s corresponding to fc=0.25 are mildly 
diffused relative to those for fc=0.75. Among the three alternative 
sets of BTC’s the one corresponding to fc=0.75 provides a marginally 
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Figure 5: Comparison of simulated and measured flow depth hydrographs (DREC-1) at (a) 3.0m, (b) 122.0m, (c) 183.0m, (d) 244.0m, and (d) 305.0m from furrow inlet.
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better fit to measured data close to the downstream end of the furrow 
where diffusion appears to be not insignificant. Similarly, for DREC-2 
data set Figure 8a-8f, the computed BTC’s corresponding to fc=0.011 
are close to pure advection. Slight diffusion can be noted toward the 
downstream end as fc is increased from 0.011 to 0.25 and then to 0.45. 

Over the entire length of the furrow, an fc value of 0.011 appears to 
produce a set of BTC’s that fit measured data better. The maximum 
relative difference between measured and computed nodal average Br- 
concentrations (obtained with fc=0.75 for DREC-1 and fc=0.011 for the 
DREC-2 data sets) is 17.8%, for the DREC-1 data set, and 9.9%, for 
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Figure 6: Comparison of simulated and measured flow depth hydrographs (DREC-2) at (a) 3.0m, (b) 61.0m, (c) 122.0m, (d) 183.0m, and (e) 244.0m from furrow inlet.
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DREC-2 data set. The furrow-wide Mean Relative Differences (MRD) 
between the measured and simulated nodal average Br- concentrations, 
obtained with fc=0.75 for DREC-1 and fc=0.011 for the DREC-2 data 
sets, are 8.8% and 5.9%, respectively.

In general, many factors, not accounted for by the pure advection-
dispersion model, influence the propagation of solutes through 
irrigation furrows. The field study presented here was conducted on 
a cracked heavy soil with subsurface preferential flow paths leading to 
complex interactions of surface and subsurface flows. These surface-
subsurface interactions may impact the solute mixing pattern and 
the cross-sectional concentration distributions differently than is 
anticipated with the advection-dispersion model. In addition, the 
spatial variability of furrow geometry, longitudinal slopes, and 
surface roughness coefficient could lead to furrow segments with 
stationary water that interacts with the stream over time modifying 
its solute concentration in a manner not taken into account by the 
pure advection-dispersion model. Physical-chemical processes not 
considered in the model described here may contribute to a lesser 
degree to the field observed concentration variations.

In addition, the inlet Br- BTC’s, especially that of the DREC-1 
data set, consist of steep concentration gradients and highly irregular 
patterns, characteristic of a solute transport problem that presents a 

high degree of difficulty for numerical solutions. Considering this 
and the uncertainties associated with the factors described above, the 
fact that the model predicted accurately the location of the BTC’s, the 
general shape and patterns of the BTC’s as they propagate through the 
furrow stream, the average nodal solute concentrations, and the furrow-
wide average solute concentrations with satisfactory accuracy even for 
a relatively difficult solute transport problem, shows that the model is a 
valuable predictive tool for fertigation management purposes.

In general, the results presented in Figures 7 and 8, support the 
emerging consensus that given the relatively short lengths of surface 
irrigation streams, advection is the dominant solute transport 
mechanism in surface irrigation. However, it also shows that, if solute 
is applied in short pulses as opposed to a solute injection pattern in 
which a constant concentration of solute is applied during the entire 
irrigation application, hydrodynamic dispersion may not be entirely 
negligible over the lower reaches of the field Figures 7 and 8. A similar 
observation was noted in reference [35] as well.

The simulated longitudinal distribution of water and solute 
in the soil profile for DREC-1 and DREC-2 data sets is depicted 
in Figure 9a and 9b. As expected, the longitudinal distribution of 
water is a monotonic decreasing function of distance. However, the 
corresponding Br- profile tends to increase over the upper reach of the 
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Figure 7: Comparison of measured and simulated Br- breakthrough curves (DREC-1) at: (a) 3.0m, (b) 61.0m, (c) 122.0m, (d) 183.0m (e) 244.0m, and (f) 305.0m from 
furrow inlet.
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furrows, peaking at a distance of about 205.0 m and 100.0 m from the 
furrow inlet for the DREC-1 and DREC-2 data sets, respectively, and 
then decreasing over the lower section of the furrows. The observed 
trend, in the Br- profile, over the upper segment of the furrows is 
mainly due to the differences in the water and solute advance times to 
the computational nodes there, which is maximum at the upstream end 
and decreases rapidly with distance from inlet end. For soils with a very 
high transient intake rates compared to the steady state intake rates 
(like the DREC-1 and DREC-2 data sets) the infiltration that occurs 
in a relatively short period immediately following initial wetting of a 
computational node represents a major fraction of the nodal cumulative 
infiltration, hence differences between water and solute advance times 
have a significant effect on nodal cumulative intake of solutes. On the 
hand, in the lower section of the furrow the amount of solute in the 
subsurface decreases with distance mainly due to a combination of 
smaller intake opportunity times and reduced solute concentrations in 
the irrigation stream (Figures 7e, 7f, 8d, and 8e).

Figures 9a and 9b also show the effects of dispersion on the 
longitudinal subsurface profile of solutes as fc is increased from 0.011 
to 0.75 for DREC-1 and from 0.011 to 0.45 for DREC-2 data sets. The 
effect of hydrodynamic dispersion is insignificant in the upper reaches 
of the test furrows and becomes relatively more pronounced toward 

the downstream end of the furrow. This is consistent with the fact that 
significant solute dispersion occurs only with distance. In addition, 
the results suggest that the longitudinal distribution uniformity of 
infiltrated bromide tends to improve as the dispersion coefficient 
is increased. However, the change in the subsurface longitudinal 
distribution of solutes is less significant than would be expected 
considering the amount of increase in the fc values.

Note that for the given geometric and hydraulic parameter sets, 
the dispersion coefficient appears to be less sensitive to changes in 
fc, which may explain the relatively small spread in the solute BTC’s 
associated with fc values of 0.45 and 0.75 (Figures 7 and 8) and the 
corresponding subsurface Br- distribution profiles (Figure 9). In 
addition, it can be noted that the effect of hydrodynamic dispersion on 
solute infiltration and hence the subsurface longitudinal distribution 
profile of solutes could be related to soil intake characteristics. The 
simulation results for DREC-1 and DREC-2 data sets suggests that in 
heavy soils hydrodynamic dispersion has a more significant effect on 
the Br amount in surface runoff than on the longitudinal subsurface 
Br distribution profile. For instance, for DREC-1 data set Br in tail 
water runoff increased from 73.3 g for fc=0.011 to 86.6 g for fc=0.75. For 
DREC-2 data set, however, Br- in runoff showed only a small increase 
from 29.8 g (fc=0.011) to 31.1 g (fc=0.45). This could be mainly due 
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Figure 8: Comparison of measured and simulated Br- breakthrough curves (DREC-2) at: (a) 3.0m, (b) 61.0m, (c) 122.0m, (d) 183.0m, and (e) 244.0m form furrow 
inlet.
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to the fact that in the DREC-2 furrow only a much smaller fraction 
of the applied Br reached the downstream computational boundary 
compared to that of DREC-1 furrow (Figures 7f and 8e).

Summary and Conclusions
A coupled flow and solute transport model for irrigation furrows is 

evaluated with field data. A simple procedure that matches computed 
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Figure 9: Simulated longitudinal infiltration profile of irrigation applied water and bromide (as a function of longitudinal dispersion constant, fc): (a) DREC-1 and (b) 
DREC-2.
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and measured flow depth hydrographs was used to estimate infiltration 
and roughness parameters. An explicit equation is used to approximate 
longitudinal dispersion coefficient as a function of geometry and 
hydraulic parameters. Cumulative infiltration and rate of infiltration 
computed with the numerical approach proposed here are in good 
agreement with those predicted by HYDRUS-2D. Solute distribution 
profiles computed with the numerical solute transport model under 
special flow (quasi-uniform) conditions compare well with those 
obtained using simplified analytical solutions for pure advection and 
1D advection-dispersion.

The coupled model predicted with satisfactory accuracy the location 
of the measured breakthrough curves (BTC’s), the general shape and 
patterns of the BTC’s as they propagate through the furrow stream, 
the average nodal solute concentrations, and the furrow-wide average 
solute concentrations. This is significant, because these factors are good 
indicators of the longitudinal subsurface distribution of solutes and 
hence the performance of a surface fertigation event. Considering the 
spatial variability of system properties not explicitly taken into account 
by the model and the complex configuration of the solute BTC’s, 
the results suggest that the coupled flow-transport model is overall a 
valuable predictive tool for irrigation/fertigation system management.

Results also suggest that model prediction could be improved if 
the hydraulic model is further developed to take into account spatial 
variability of system properties. In addition, the availability of a 
furrow irrigation hydraulic parameter estimation model that takes 
into account furrow wetted perimeter variation in the framework of a 
formal mathematical programming algorithm could improve accuracy 
of model predictions.
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